Interpreting user request
I need to understand the user's request in Chinese about football league key player data statistics. It's a bit vague, and they could need help with statistical analysis, script creation, or a report. I should ask clarifying questions: which league, data sources, metrics, timeframe, output format, coding language, and if a dataset exists. Also, I'm considering our environment settings; it seems I need to follow protocols regarding running commands judiciously. I plan to gather data, define metrics, and compute relevant statistics.Proposing coding options
I need to provide a Python code template using pandas for the user's request. I could suggest using CSVs from football-data.co.uk or scraping from FBref, but I must check if network approvals are needed. I’ll propose working offline and ask the user for data or permission to scrape. I can offer three options: 1) they share a CSV, and I’ll write the script; 2) they approve fetching data from certain sites; or 3) they provide the metrics and timeframe. I could include a sample script to calculate key metrics and rankings.Using StatsBomb data for analysis

I can use the StatsBomb open data from GitHub for both men's and women's football, even without scraping, although it's a bit more complex. Since the user might be Chinese-speaking, I should respond in Chinese. I’ll outline a structured plan with bullet points that clarify the scope, data source, metrics, and output. I’ll also provide a code skeleton, ask key questions, and define next steps. Following the guidelines, I'll keep the formatting light. I can also offer to adapt mapping if the user sends a sample row.Computing player metrics
I’ll compute metrics like npxG, where we set pens_xG to 0 unless a column exists. Then, I want to calculate values like npxG90, npxG+xA per 90, shot volume, key passes, SCA, GCA, and defensive actions, among others, while checking for missing columns. I plan to group percentiles by position. I can also provide a small notebook or CLI tool if the user wants that. ASCII is fine for coding, and I’ll keep it concise while ensuring clarity in the response.
想做哪种统计?先帮我确认这些关键信息:
建议统计维度(按位置分层并做每90 + 百分位):
下面给你一个可直接跑的 Python/pandas 脚本雏形:读取一个球员赛季汇总 CSV,计算 per90、百分位与综合评分,并导出榜单。你只需把列名映射到你实际数据即可。
# file: key_players.py
import pandas as pd
import numpy as np
# 配置
INPUT = "players.csv" # 你的球员赛季级数据
OUT_LEADERS = "leaders.csv" # 联赛榜单
OUT_BY_TEAM = "by_team_top.csv"
MIN_MINUTES = 900 # 最低出场门槛
POS_MAP = {"F":"FW","M":"MF","D":"DF","GK":"GK"} # 粗分位置
# 期望的列(可缺省,脚本会兜底为0)
EXPECTED = {
"player":"player", "team":"team", "pos":"pos", "minutes":"minutes",
"goals":"goals", "pens_made":"pens_made", "assists":"assists",
"shots":"shots", "key_passes":"key_passes",
"xG":"xG", "xA":"xA",
"sca":"sca", "gca":"gca",
"progressive_passes":"prog_passes",
"progressive_carries":"prog_carries",
"passes_into_final_third":"p_final3",
"passes_into_penalty_area":"p_box",
"tackles":"tackles", "interceptions":"interceptions",
"pressures":"pressures",
"aerials_won":"aerials_won", "aerials_lost":"aerials_lost"
}
def load():
df = pd.read_csv(INPUT)
# 标准化列名:尽量匹配 EXPECTED 指向的名字
# 你可以直接把 EXPECTED 的 value 改成你CSV的真实列名
rename = {v:k for k,v in EXPECTED.items() if v in df.columns}
df = df.rename(columns=rename)
# 为缺失列补0
for k in EXPECTED.keys():
if k not in df.columns:
df[k] = 0
# 位置粗分
def map_pos(p):
if isinstance(p,str) and p:
c = p[0].upper()
return POS_MAP.get(c, c)
return "UNK"
df["pos_grp"] = df["pos"].apply(map_pos)
return df
def per90(df):
m = df["minutes"].replace(0, np.nan)
def p90(x): return x / m * 90
df["npxG"] = df["xG"] - 0.0 # 若有点球xG列可减去
df["npxG90"] = p90(df["npxG"])
df["xA90"] = p90(df["xA"])
df["G90"] = p90(df["goals"])
df["A90"] = p90(df["assists"])
df["Shots90"] = p90(df["shots"])
df["KP90"] = p90(df["key_passes"])
df["SCA90"] = p90(df["sca"])
df["GCA90"] = p90(df["gca"])
df["ProgAct90"] = p90(df["progressive_passes"] + df["progressive_carries"])
df["Final3P90"] = p90(df["passes_into_final_third"])
df["BoxP90"] = p90(df["passes_into_penalty_area"])
df["DefAct90"] = p90(df["tackles"] + df["interceptions"])
df["Press90"] = p90(df["pressures"])
# 空战胜率
air_total = df["aerials_won"] + df["aerials_lost"]
df["AerialWin%"] = np.where(air_total>0, df["aerials_won"]/air_total, np.nan)
# 进攻综合
df["npxG+xA90"] = df["npxG90"] + df["xA90"]
# 终结效率(简单版)
df["G-xG"] = df["goals"] - df["xG"]
return df
def percentiles(df, cols, by="pos_grp"):
# 按位置分组做百分位
def pct(s, v):
# 以nan安全的方式计算百分位
return (s < v).mean() if np.isfinite(v) else np.nan
for c in cols:
pname = c + "_pct"
df[pname] = np.nan
for g, sub in df.groupby(by):
s = sub[c].astype(float)
ranks = s.rank(pct=True, method="average")
df.loc[sub.index, pname] = ranks.values
return df
def composite_score(df):
# 不同位置可用不同权重,这里提供一个默认权重
weights = {
"FW": {"npxG90_pct":0.35, "xA90_pct":0.15, "Shots90_pct":0.10,
"KP90_pct":0.10, "SCA90_pct":0.10, "ProgAct90_pct":0.05,
"DefAct90_pct":0.05, "Press90_pct":0.05, "AerialWin%_pct":0.05},
"MF": {"xA90_pct":0.20, "KP90_pct":0.15, "SCA90_pct":0.15,
"ProgAct90_pct":0.15, "Final3P90_pct":0.10, "BoxP90_pct":0.05,
"DefAct90_pct":0.10, "Press90_pct":0.05, "npxG90_pct":0.05},
"DF": {"DefAct90_pct":0.30, "Press90_pct":0.10, "AerialWin%_pct":0.15,
"ProgAct90_pct":0.10, "Final3P90_pct":0.10, "BoxP90_pct":0.05,
"xA90_pct":0.05, "KP90_pct":0.05, "npxG90_pct":0.10},
"GK": {} # 本脚本不评GK
}
cols_for_pct = ["npxG90","xA90","Shots90","KP90","SCA90","GCA90",
"ProgAct90","Final3P90","BoxP90","DefAct90","Press90","AerialWin%"]
df = percentiles(df, cols_for_pct + ["G-xG"], by="pos_grp")
scores = []
for idx, row in df.iterrows():
w = weights.get(row["pos_grp"], weights["MF"])
s = 0.0
for k, alpha in w.items():
v = row.get(k, np.nan)
if np.isfinite(v):
s += alpha * v
scores.append(s)
df["KeyScore"] = scores
return df
def main():
df = load()
# 过滤分钟
df = df[df["minutes"] >= MIN_MINUTES].copy()
df = per90(df)
df = composite_score(df)
# 榜单
leaders = (df.sort_values(["pos_grp","KeyScore"], ascending=[True, False])
.groupby("pos_grp")
.head(50)
.reset_index(drop=True))
# 导出
keep_cols = ["player","team","pos","pos_grp","minutes",
"npxG90","xA90","npxG+xA90","Shots90","KP90","SCA90","GCA90",
"ProgAct90","Final3P90","BoxP90","DefAct90","Press90","AerialWin%",
"G-xG","KeyScore"]
leaders[keep_cols].to_csv(OUT_LEADERS, index=False)
# 各队内前5
by_team = (df.sort_values("KeyScore", ascending=False)
.groupby("team")
.head(5)
.reset_index(drop=True))
by_team[["team","player","pos","KeyScore","npxG+xA90","ProgAct90","DefAct90"]].to_csv(OUT_BY_TEAM, index=False)
print(f"Saved {OUT_LEADERS} and {OUT_BY_TEAM}")
if __name__ == "__main__":
main()
使用方法
players.csv,至少含这些列:player, team, pos, minutes, goals, assists, shots, key_passes, xG, xA;其余列缺失也可运行。EXPECTED 右侧的值改成你实际列名。python key_players.py,会生成 leaders.csv(联赛榜单)与 by_team_top.csv(各队内Top5)。需要我:

给我一个样例数据头几行或说明目标联赛与赛季,我就继续完善到可复用的管道。